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Abstract 

The need to build next generation air force systems with highly complex functions, but at rela- 
tively low cost, will inevitably means a major investment in software. Without highly reliable 
software, any ambitious air force program cannot succeed. Indeed, software is the keystone (or 
perhaps the Achilles heel) of most large-scale automation projects; and the problem of making 
software reliable has become one of today's most important technological challenges. 

To address this problem and to improve software reliability, we designed novel program analy- 
sis techniques that significantly speed up software model checking, thereby enabling the check- 
ing of much larger programs and broader class of program properties than previously possible. 

In particular, we developed a software model checker for efficiently checking data oriented 
programs with respect to complex data dependent properties. We used our model checker for 
checking programs that use linked data structures such as lists, queues, trees, and maps. Veri- 
fying such programs has often been an obstacle to progress in the past and is a key underlying 
technical challenge in software verification. Because these programs have complex data depen- 
dent properties, the state space reduction techniques (such as predicate abstraction or partial 
order reduction) used by other model checkers are largely ineffective on such programs. Our 
model checker uses novel techniques to achieve orders of magnitude state space reduction. 

In addition, we also developed a novel trace driven approach to use counter example guided 
abstraction refinement (CEGAR) to check for concurrency errors in multithreaded programs. 

1    Introduction ^öUO^l^l^O 

Context 

The motivation behind this lesearcn is uie rieeu tor renaoie anu secure sonware.   software has 
become pervasive in civilian and military infrastructure.  All activities including transportation, 



telecommunications, energy, medicine, and banking rely on the correct working of software sys- 
tems. Consequently, the problem of making software reliable and secure has become one of to- 
day's most important challenges. Multi-hundred-million-dollar space projects are interrupted by 
software glitches, power-grid failures are caused by bugs in software, and new security exploits 
are announced daily. Software reliability is crucial in critical systems, where failures can lead 
to loss of life—with risks ranging from a few individuals (anti-lock braking systems and airbag- 
deployment systems) to a few hundred (aircraft collision-avoidance systems) to tens of thousands 
(nuclear reactors and weapons systems). Software reliability also impacts security because buggy 
code underlies most security violations and progress in making systems more reliable will almost 
certainly make them more resistant to deliberate attack as well. Moreover, software reliability has 
a significant impact on economy. Studies estimate that bugs in software cost businesses worldwide 
about $175 billion [40] annually. Improving software reliability and security is thus essential and 
better tools and technologies are needed for identifying bugs and vulnerabilities in programs. 

Air Force Context 

The need to build the next generation autonomous and semi-autonomous air force systems with 
highly complex functions, but at relatively low cost, will inevitably mean a major investment in 
software. Already, software accounts for more than 60% of the cost of air force systems, and 
the cost of verification and validation of software sometimes comprises over 50% of the software 
development cost. These percentages will be even higher if the next generation systems are built 
using current software development and verification technologies because of the increase in the 
size and complexity of the software due to added functionality. But without highly reliable soft- 
ware, any ambitious defense program cannot succeed. Indeed, software is the keystone (or perhaps 
the Achilles heel) of most large-scale automation projects. One cannot over-emphasize the impor- 
tance of this issue, especially in view of the reliability/delays/budget-overrun problems that have 
occurred in highly visible DoD projects, such as F/A-22 and SBIRS-HIGH. 

Approach and Outline 

Our research improves software reliability and security by enhancing the state of art in soft- 
ware model checking, thereby enabling the checking of much larger programs and broader class 
of program properties than previously possible. The rest of the report summarizes the main 
contributions of our research. More details about our research can be found in our publica- 
tions [13, 37, 38, 39, 45, 46, 47] and a forthcoming Ph.D. thesis [36]. 

2   Glass Box Software Model Checking 

Model checking is a formal verification technique that exhaustively tests a circuit/program on all 
possible inputs (usually up to a given size) and on all possible nondeterministic schedules. For 
hardware, model checkers have successfully verified fairly complex finite state control circuits 
with up to a few hundred bits of state information; but not circuits in general that have large 
data paths or memories. Similarly, for software, model checkers have primarily verified control- 
oriented programs with respect to temporal properties; but not much work has been done to verify 
data-oriented programs with respect to complex data-dependent properties. 

Thus, while there is much research on software model checkers [2, 4, 7, 10, 11, 16, 18, 41, 21, 
30] and on state space reduction techniques for software model checkers such as partial order 
reduction [17, 18] and tools based on predicate abstraction [19] such as Slam [2], Blast [21], or 



Magic [7], none of these techniques seem to be effective in reducing the state space of data-oriented 
programs. For example, predicate abstraction relies on alias analysis that is too imprecise. 

To address this problem, we introduced glass box software model checking. Our checker incor- 
porates novel techniques to identify similarities in the state space of a model checker and safely 
prune large numbers of redundant states without explicitly checking them. Thus, while traditional 
software model checkers such as Java PathFinder (JPF) [41 ] and CMC [30] separately check ev- 
ery reachable state within a state space, our glass box checker checks a (usually very large) set of 
similar states in each step. This leads to orders of magnitude speedups over previous approaches. 

Consider checking that a red-black tree [12] implementation maintains the red-black tree invari- 
ants. Previous model checking approaches such as JPF [41, 26], CMC [30], Korat [4], or Al- 
loy [22, 25] systematically generate all red-black trees (up to a given size n) and check every 
red-black tree operation (such as insert or delete) on every red-black tree. Since the number of 
red-black trees with at most n nodes is exponential in n, these systems take time exponential in n 
for checking a red-black tree implementation. Our system works as follows. Our checker detects 
that any red-black tree operation such as insert or delete touches only one path in the tree from 
the root to a leaf (and perhaps some nearby nodes). Our checker then determines that it is sufficient 
to check every operation on every unique tree path (and some nearby nodes), rather than on every 
unique tree. Since the number of unique red-black tree paths is polynomial in n. our checker takes 
time polynomial in n. This leads to orders of magnitude speedups over previous approaches. 

In general, our system works as follows. Consider checking a file system implementation, as an- 
other example. As our checker checks a file system operation o (such as reading, writing, creating, 
or deleting a file or a directory) on a file system state s, it uses its analyses to identify other file 
system states sf

lf s'2,..., s'k on which the operation o behaves similarly. Our analyses guarantee that 
if o executes correctly on s, then o will execute correctly on every .$[. Our checker therefore does 
not need to check o on any s[ once it checks o on s. It thus safely prunes those state transitions 
from its search space, while still achieving complete test coverage within the bounded domain. 

We call this the glass box approach to software model checking because our checker analyzes the 
behavior of an operation to prune large portions of the search space. We tested our system on a 
variety of programs and compared our system to other state of the art model checkers including 
Blast [21], JPF [41], and Korat [4]. We found that our system is significantly more efficient for 
checking data-oriented programs and data-dependent properties. 

Note that like most model checking techniques [4, 16, 18, 41, 30], our system (in effect) exhaus- 
tively checks all states in a state space within some finite bounds. While this does not guarantee 
that the program is bug free because there could be bugs in larger unchecked states, in practice, 
almost all bugs are exposed by small program states. This conjecture, known as the small scope 
hypothesis, has been experimentally verified in several domains [23, 29, 34]. Thus, exhaustively 
checking all states within some finite bounds generates a high degree of confidence that the pro- 
gram is correct (with respect to the properties being checked). 

Compared to our system, formal verification techniques that use theorem provers [3, 24, 32] are 
fully sound. However, these techniques require significant human effort (in the form of loop in- 
variants or guidance to interactive theorem provers). For example, an unbalanced binary search 
tree implemented in Java can be checked in our system with less than 20 lines of extra Java code, 
implementing an abstraction function and a representation invariant. In fact, it is considered a good 



programming practice [28] to write these functions anyway, in which case our system requires no 
extra human effort. However, checking a similar program using a theorem prover such as Coq [3] 
requires more than 1000 lines of extra human effort. 

Compared to our system, other model checkers are more automatic because they do not require 
abstraction functions and representation invariants. However, our system is significantly more 
efficient than other model checkers for checking certain kinds of programs and program properties. 

We present glass box software model checking as a middle ground between automatic model 
checkers and program verifiers based on theorem provers that require extensive human effort. 

More details on this research can be found in [13]. 

3    Modular Glass Box Software Model Checking 

To further improve the scalability of glass box software model checking, we introduced PlPAL, a 
system for modular glass box software model checking. In a modular checking approach program 
modules are replaced with abstract implementations, which are functionally equivalent but vastly 
simplified versions of the modules. The problem of checking a program then reduces to two tasks: 
checking that each program module behaves the same as its abstract implementation, and checking 
the program with its program modules replaced by their abstract implementations [9]. 

Extending traditional model checking to perform modular checking is trivial. For example, Java 
PathFinder (JPF) [41] or CMC [30] can check that a program module and an abstract implementa- 
tion behave the same on every sequence of inputs (within some finite bounds) by simply checking 
every reachable state (within those bounds). 

However, it is nontrivial to extend glass box model checking to perform modular checking, while 
maintaining the significant performance advantage of glass box model checking over traditional 
model checking. In particular, it is nontrivial to extend glass box checking to check that a module 
and an abstract implementation behave the same on every sequence of inputs (within some finite 
bounds). This is because, unlike traditional model checkers such as Java PathFinder or CMC, 
our glass box model checker does not check every reachable state separately. Instead it checks a 
(usually very large) set of similar states in each single step. Our research solves this problem. 

We tested PlPAL on a variety of programs. Our experiments indicate that the modular model 
checking technique is far more efficient than checking programs as a unit. 

More details on this research can be found in [37]. 

4    Glass Box Software Model Checking of Soundness of Type Systems 

In addition to checking program properties, we also used our system on an orthogonal but interest- 
ing problem—of automatically checking soundness of type systems. 

Type systems provide significant software engineering benefits. Types can enforce a wide variety 
of program invariants at compile time and catch programming errors early in the software devel- 
opment process. Types serve as documentation that lives with the code and is checked throughout 
the evolution of code. Types also require little programming overhead and type checking is fast 
and scalable. For these reasons, type systems are the most successful and widely used formal 
methods for detecting programming errors. Types are written, read, and checked routinely as part 
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of the software development process. However, the type systems in languages such as Java, C#, 
ML, or Haskell have limited descriptive power and only perform compliance checking of certain 
simple program properties. But it is clear that a lot more is possible. There is therefore plenty 
of research interest in developing new type systems for preventing various kinds of programming 
errors [6, 14,20.31,42]. 

A formal proof of type soundness lends credibility that a type system does indeed prevent the 
errors it claims to prevent, and is a crucial part of type system design. At present, type soundness 
proofs are mostly done on paper, if at all. These proofs are usually long, tedious, and consequently 
error prone. There is therefore a growing interest in machine checkable proofs of soundness [1]. 
However, both the above approaches—proofs on paper (e.g., [15]) or machine checkable proofs 
(e.g., [33])—require significant manual effort. 

Our research presents an alternate approach for checking type soundness automatically using a 
software model checker. Our idea is to systematically generate every type correct intermediate 
program state (within some finite bounds), execute the program one small step forward if possible 
using its small step operational semantics, and then check that the resulting intermediate program 
state is also type correct—but do so efficiently by detecting similarities in this search space and 
pruning away large portions of the search space. Thus, given only a specification of type correct- 
ness and the small step operational semantics for a language, our system automatically checks type 
soundness by checking that the progress and preservation theorems [35, 44] hold for the language 
(albeit for program states of at most some finite size). 

Our experimental results on several languages—including the language of integer and boolean 
expressions from [35, Chapters 3 & 8], a typed version of the imperative language IMP from [43, 
Chapter 2], an object-oriented language which is a subset of Java, and a language with ownership 
types [5, 8]—indicate that our approach is feasible and that our search space pruning techniques 
do indeed significantly reduce what is otherwise an extremely large search space. Our research 
thus offers a promising approach for checking type soundness automatically, thereby enabling 
the design of novel type systems. In particular, this can enormously help programming language 
designers in debugging their language specifications. Currently there is no other technology around 
to automate this task effectively. 

More details on this research can be found in [38]. 

5    Model Checking Multithreaded Programs Using Counter Example Guided 
Abstraction Refinement 

Making multithreaded programming easier and less error-prone is an area of growing interest be- 
cause of the increasing availability of inexpensive multicore hardware. In addition to the glass 
box software model checking, we also developed a novel approach to use counter example guided 
abstraction refinement or CEGAR [27] to check for concurrency errors in multithreaded programs. 
CEGAR creates and checks an abstraction of a program to reduce the state space. Abstractions 
that are too coarse generate counter examples. CEGAR uses them to refine the abstraction and 
redo the checking. We developed an efficient symbolic encoding of multithreaded programs and a 
novel trace driven abstraction and refinement approach to check their execution. 

More details on this research can be found in [39, 45, 46, 47]. 
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